Board Level Failure Analysis of Chip Scale Package Drop Test Assemblies

نویسندگان

  • Nicholas Vickers
  • Kyle Rauen
  • Andrew Farris
  • Jianbiao Pan
چکیده

This paper presents the failure analysis results of board level drop tests. In this study, the test vehicle was designed according to the requirements of the Joint Electron Device Engineering Council (JEDEC) drop test board. The test vehicle was assembled with 15 chip scale packages (CSPs) each having 228 daisy-chained 0.5 mm pitch solder joints using Sn-3.0 wt% Ag0.5 wt% Cu (SAC305) lead free solder. Assemblies were drop tested using three different peak accelerations of 900 G, 1500 G, 2900 G, with 0.7 ms, 0.5 ms, and 0.3 ms pulse durations, respectively. Scanning electron microscopy (SEM) with energy dispersive spectroscopy and dye-penetrant methods were applied to investigate the failure locations and the failure modes. The failure modes and solder joint locations were mapped. Failure analysis showed that pad cratering was the most common failure mode and that this led to trace cracking on the board side. Trace cracking was the second most common failure mode. Solder joint cracking was also observed on the board side near the intermetallic layer, which was the third most common failure mode. The results imply that the solder joint is more reliable than the printed circuit board during drop test.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrated Testing, Modeling and Failure Analysis of Csp for Enhanced Board Level Reliability

The Wafer Level Chip Scale Package (WLCSP) is gaining popularity for its performance and for its ability to meet miniaturization requirements of certain electronic products, especially handheld devices like cell phones. Due to differential bending between the silicon die and the PCB and the large stiffness difference, board level drop/bend tests are widely accepted methods to evaluate damage in...

متن کامل

Drop impact reliability of edge-bonded lead-free chip scale packages

This paper presents the drop test reliability results for edge-bonded 0.5 mm pitch lead-free chip scale packages (CSPs) on a standard JEDEC drop reliability test board. The test boards were subjected to drop tests at several impact pulses, including a peak acceleration of 900 Gs with a pulse duration of 0.7 ms, a peak acceleration of 1500 Gs with a pulse duration of 0.5 ms, and a peak accelerat...

متن کامل

Board Level Reliability Comparison of Lead Free Alloys

Board level reliability testing was used to compare six lead free alloys to tin-lead eutectic using a 98 ball Wafer Level Chip Scale Package (WLCSP). The component had a 0.5mm Ball Grid Array (BGA) pitch, and Al/NiV/Cu pad metallization. Thermal cycling (4 conditions), cyclic bend (2 conditions), cyclic drop (3 conditions), and solder joint array tensile testing (3 conditions) were utilized to ...

متن کامل

Csp/bga Board Level Reliability

Different aspects of advanced surface mount package technology have been investigated for aerospace applications. Three key areas included the assembly reliability of conventional Surface Mount, Bali Grid Arrays (BGAs), and Chip Scale Packages. Reliability of BGAs was assessed as part of a consortium effort led by the Jet Propulsion Laboratory. Nearly 200 test vehicles, each with four packages,...

متن کامل

Experimental and numerical analysis of BGA lead-free solder joint reliability under board-level drop impact

Board-level solder joint reliability is very critical for handheld electronic products during drop impact. In this study, board-level drop test and finite element method (FEM) are adopted to investigate failure modes and failure mechanisms of lead-free solder joint under drop impact. In order to make all ball grid array (BGA) packages on the same test board subject to the uniform stress and str...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008